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Abstract 

Representations of abstract observables on a generalised logic are given in terms of 
bounded vector-valued Borel measures on the real line whose ranges are in the dual 
space X* of the Banach space of states X. Each bounded observable is furthermore 
represented by an element u* of X* such that for any proper state p ~ X, u*(p) is the 
expectation value of u when the system is in the statep. 

1. Generalised Quantum Theory 

By generalised quantum theory is meant in this paper the list (A a, 5:,  ~) 
where ~ is the proposition system assumed to form an orthocomplemented 
weakly modular a-lattice which we call generalised logic, 5# is the set of  
(proper) states consisting of all the probability measures on A a and 0 is 
the set of  observables consisting of all the a-homomorphisms on the Bore1 
a-algebra ~ of the real line R into ~ .  Another ingredient to consider is 
the group A u t ( 5  o) consisting of all the convex automorphisms of 5 t'. 
This contains the symmetry operations of the system under consideration. 
For definitions see Varadarajan (1968, pp. 105-130). 

With such weak conditions on A ~ the theory is very general and includes 
both quantum and classical mechanics as special cases. Extra conditions 
must be imposed on the logic so as to reproduce the conventional quantum 
formalism in terms of a separable Hilbert space. These, however, are not 
very clear physically. Restricting ourselves to the generalised case ( ~ ,  5:,  0), 
it is necessary to carry out further mathematical developments in order to 
investigate rigorously questions connected with particles, localisability, 
dynamics, symmetries and scattering--some of the principal considerations 
of any physical theory. The main technical problem is that of  obtaining 
useful representations of 5:', 5e, Aut (S: )  and d7 in terms of entities con- 
nected with some topological vector space. Our aim in this series is 
to obtain such representations which, although not as sharp as in the 
quantum case, are strong enough so as to bring the subject into grips with 
modern analysis. In the rest of  this section are outlined the results obtained 
showing that the generalised theory is quite manageable mathematically. 
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In a previous paper (Kronfli, 1970) representations of 5 :  and Aut(S#) 
were obtained. Firstly we chose the most important topology, from the 
physical point of view, on 5:,  namely that defined by the natural metric 

p ( p , q ) = s u p { [ p ( a ) - q ( a ) l : a ~  ~ }  (p, qE 5 #) 

with 5 :  being assumed separating. Let X1 be the set of all signed measures 
on .,~t' with finite variations. Defining 

[]pll = ]P[(/) (p ~ X1) 

where a --> ]pl(a) is the total variation o f p  at a ~ ~ and I is the identity 
on ~o the following were proved 

Theorem l.1 

(Xl, I1"11) is a real Banach space containing 5: as a closed convex subset 
with the norm ll" II inducing the natural metric. 

Theorem l.2 

Each convex automorphism of 5: is represented uniquely by a unit-normed 
linear one-one operator on (X, 11"13 onto itself, where X is the closure of  the 
linear span of  S:  in (X1,]I "ll). 

These two theorems bear some resemblance to the corresponding ones 
in quantum theory and for this reason we call X the Banaeh space of  states. 
Problems connected with symmetries, for example, are now easy to handle 
using operator theory. For an application to abstract scattering see Kronfli 
(1969). 

To complete the picture we consider in this paper the representation 
theory of the observables (9 on the generalised logic ~o. For quantum 
logic the observables are represented by projection-valued (spectral) 
measures on the Borel subsets of R which is equivalent to representing 
them by the corresponding self-adjoint operators on the Hilbert space of 
(quantum) states ~Y~. It is now the practice to regard each self-adjoint 
operator on ~ as a quantum observable although whether it can actually 
be observed or not is still a question of debate. Here we shall obtain results 
rather similar to the quantum case. Each observable u on the generalised 
logic ~a is represented (one-one) by an X*-valued weakly countably 
additive Borel measure on R satisfying special boundedness properties 
similar to those of spectral measures in the quantum case. The set of all 
such measures is denoted by ~ ' .  Here X* is the (Banach) dual of X. The 
question of regarding each element of ~ as an observable is investigated. 
In fact we give conditions on (9 such that each measure in ~ '  represents an 
observable. When (9 satisfies these conditions J r '  and (9 can be identified. 

Finally we consider the bounded observables (9o on ~,r We shall prove 
that each u ~ (90 is represented simply by a continuous linear functional 
u* on X, i.e. by an element u* E X*, with the desirable property that for 
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any state p E 5 ~ u*p = @,u*) is the expectat ion value of  u when the 
system is in the state p. This gives an impor tan t  physical role to X* and 
we can call it the Banach space of bounded observables. 

2. Integration Theory of Observables 

The first result is an injection of  the logic ~ into the dual X* of  X. 
We shall adopt  the following notat ion:  for  any linear functional f on X 
we write 

( p , f )  for  f (p)  ( p ~ X )  

Proposition 2.1 

There exists a natural injection T: :W -+ X* such that 

(i) T ( ~ )  = 0, 
(ii) [[T(a)l] ~< 1 (a E ~oq~), [FT(1)]r = 1, 

(iii) T is weakly countably additive on ~ .  

Proof: For  each a ~ Y consider the m a p  T(a):p-+p(a) on X - +  R, This 
is clearly a single-valued real linear functional on X such that  T ( ~ ) =  0. 
Fur thermore ,  for  any p ~ X, 

](p,T(a))] = [p(a)[ < [p [ (a )<  [ p [ ( I ) =  []Pll 

implying that  T(a) e X *  and HT(a)[[< 1. Also for  p~  St', (p,T(1))= 
p(I) = 1 which means that  ][T(I)[[ = 1. 

The m a p  a-+ T(a) is an injection because T(a)= T(b) implies that  
p(a) = p ( b )  for  all p ~ X and since 5 a is separat ing and is contained in X 
this in turn implies that  a ~ b. 

Thus T i s  one-one. 
It  remains to prove (iii). Let (a,) be a disjoint sequence in ~a. Then for 

any p e X 

(p ,  T(V a , ) )  = p(V a,,) = ~ p(a,,) = ~ (p ,  T(a,)). 
n n n n 

This completes the proof.  I 

Corollary 2.2 

The natural injection T of  Proposi t ion 2.1 induces a metric on ~q' given by 

d(a, b) = I]T(a) - T(b)]l (a, b ~ ~-q~) 

Definition 2.3 

Let ~A '+ be the set of  all bounded weakly countably  additive X*-valued 
measures  on the Borel or-algebra ~ of  the real line. This is a real Banaeh 
space when equipped with the no rm 

llk~lrl = sup{])x(A)]] :A e ~,~) (/z E d t  '+) 
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For  a p roo f  see Dunfo rd  & Schwartz (1958). F r o m  now on II" [I wi thout  a 
suffix will denote the norms  of  X or X*. Finally we define 

�9 . . g={Ix~+:I I Ix (A) I [<. .1 , (p ,  IxfA))>.~O ( p ~ 5 ' ~ , A ~ ) ,  

HIx(R)II = 1} 

The  next  result is the main  representat ion theorem for  d), 

Theorem 2.4 

There exists a one-one map u -+ fi on d) into J t  such that 

(p,  fitA)) = p(u(A)) (p ~ X, A ~ ~ )  

Proof: The required mapp ing  u - +  fi is given by fi = To u where T is the 
injection in Proposi t ion 2.1. The  rest o f  the p roo f  is s t ra ightforward using 
Propos i t ion  2.1. �9 

Remarks 

Let  u ~ 0 and fi ~ d g  be the corresponding vector-valued measure  as in 
Theo rem 2.4. Then for any  proper  state p ~ 5 a and A ~ N ,  (p ,  fi(A)) is the 
probabi l i ty  of  finding the observable u in the Borel set A when the system 
is in the s ta tep.  No te  also that  I[fill~ = 1. Compare  the similarity of  the above 
representat ion theorem with the corresponding one in quan tum theory. 

The  next  result  is an impor tan t  p roper ty  of  the set ,/r 

Theorem 2.6 

The set d [  is a closed subset o f (d~  +, ]1. i11). 

Proof'. Let  (IX.) be a sequence in ~ '  which converges to/% in (~+,ll 'lIl) 
Note  tha t  Ilixnllx -- 1 and for  any v ~ ~d '+, I lv(/)II  < Ilvlll for  all A ~ ~ .  Thus  

1[1 - Ilu(R)II]I = [[IIIX.(R)II - IIIX(R)II]I 

< IIIX,fR) - Ix(Nil 

< IlIx, - Ixl!l -+ 0 (n -+ o~) 

Hence  II~(R)[f = 1. Fur thermore ,  for  each A ~ ~ the sequence (IIIx.(A)II) is 
bounded  by 1 and t%, -+/% implying that  IlIxfA)ll < 1. Similarly @,Ix(A)) >~ 0 
for  all p ~ 5 a and  A ~ ~ .  Thus Ix ~ J g  and dr '  is closed. �9 

3. Total and Bounded Observables 

We now come to the question of  when can one regard each element of  
as representing an observable.  I t  is obvious tha t  with each observable 

u there is a probabi l i ty  measure  on R corresponding to each state of  the 
system, I t  sounds reasonable  to postulate  the converse which roughly says 
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that each map on ~T into the class of probability measures on R which 
satisfies certain properties defines an observable. No philosophical dis- 
cussion of this is attempted here. We only give the mathematical formula- 
tion. 

Definition 3.1 

Let ~ be the set of all probability measures on the real line and let 
Horn(5 e, ~ )  be the set of all convex homomorphisms on Sg into ~ .  
Then a set of observables (9 on the logic ~,e is said to be total if to each 
element of Horn(5 a, ~ )  corresponds a unique observable in (9. 

Theorem 3.2 

Let (9 be total Then to each element of Jg  corresponds an observable. 

Proof: Let/z ~ Jr '  and define Pu(E) = (p,/Z(E)) (E ~ M) for each p ~ 50. 
By Definition 2.3, (p,/z(E)) ~> 0 when p e 5 a. Furthermore, 

P . ( E )  = I<p,/Z(E)>] ~< Ilprl'll/z(E)[l < 1 

sincep e 6~ implies Ilp[{ = 1. Also by definition of/z, P u ( ~ ) =  0, P, (R)= 1. 
Thus P ,  e ~ .  Now consider the map J ,  :p ~ P ,  of ~9 ~ into ~ .  It is obvious 
that J ,  s Hom(SP, ~ )  and since (9 is total it defines a unique observable 
in (9. m 

Thus when (9 is total we can identify it with dr'. 

Definition 3.3 

An observable u ~ (9 is said to be bounded if and only if its support, 
supp (u), is a compact subset of R. The set of all bounded observables will 
be denoted by (90. 

Theorem 3.4 

Let u ~ ~ be the injection of 0 into ~g defined in Theorem 2.4. Then the 
map u --> u* given by 

= ~ xa(dx) (u ~ (90) U* 

R 

maps (90 into X* and is such that (p,u*> is the expectation value of u when 
the system is in the state p ~ 5#. 

Proof: Since supp(a) is compact, the integral J'R x~(dx) exists and is single- 
valued in X*. Thus u ~ u* is a mapping of 00 into X*. Now let p ~ X, 
then (p, u*) = SR x(p,  ~(dx)) since ~ is of compact support and hence a 
regular vector-valued Borel measure, see Dinculeanu (1967). By Theorem 
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2.4, (p ,~(A))  =p(u(A)) (A E ~ )  and hence for p ~ 5r ~R x(p ,  ft(dx)) = 
SR xpou(dx) which is the expectation value o f  u when the system is in the 
statep,  m 

Remarks 

With  the notat ion of  Theorem 3.4 we have a mapping of  d~0 onto the 
subset 

o f  the space X*. Physically this gives an impor tant  role to X* since each 
u* ~ ~ c X* is a bounded  linear functional on X 'representing'  a bounded  
observable u such that  for any proper  statep, u*(p) is the expectation value 
o f  u in this state. 
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